

> OLH3OO High Speed Hermetic Optocoupler

SCHEMATIC

Features

- Electrical parameters guaranteed over $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ ambient temp. range
- 1000 Vdc electrical isolation
- High-Speed, 1 Mbit/s typical
- Open collector output
- 300 Khz bandwidth
- TO-5 hermetic package
- Similar to 6N135/136, 4N55
- Radiation tolerant
- 100% hi-rel screening are offered

PACKAGE OUTLINE

Description

The OLH 300 is suitable for interfacing TTL to LSTTL, TTL or CMOS as well as wide bandwidth analog applications. Each OLH 300 has a light emitting diode and an integrated photodiode transistor detector mounted and coupled in a ceramic substrate inside a hermetic TO-5 package providing 1000 Vdc electrical isolation between input and output. The integrated photo-diode transistor improves switching speed by orders of magnitude as compared to standard photo transistors, by reducing the base to collector capacitance. The internal shield provides excellent common-mode immunity performance.

[^0]
$\overline{\text { Absolute Maximum Ratings }}$

Couple
Input to Output Isolation Voltage ${ }^{1}$
Storage Temperature Range
Operation Temperature Range $\pm 1000 \mathrm{Vdc}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$240^{\circ} \mathrm{C}$
Lead Temperature 1.6 mm from case for 10 sec .
Input Diode
Average Input Current
Peak Forward Current ($\leq 1 \mathrm{mS}$ duration) 40 mA
Reverse Voltage
5.0 V

Power Dissipation
36 mW
Output Detector
Average Output Current 8 mA
Peak Output Current 16 mA
Supply Voltage, Vcc
-0.5 V to 18 V
Output Voltage, Vout
Power Dissipation
ELECTRICAL CHARACTERISTIC ($\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, Unless Otherwise Specified)

Parameter	Symbol	Min	Typ.	Max	Units	Test Conditions	Fig.	Note
Current Transfer Ratio	CTR	20	45		\%	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{Vo}=0.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{cc}}=4.5 \mathrm{~V}$,	2	2
Logic Low Output Voltage	VOL		. 25	0.4	V	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{IO}_{\mathrm{L}}=1.5 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}$		
Logic High Output Current	I_{OH}		. 05	100	$\mu \mathrm{A}$	$\mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}$		
Supply Current Logic Hi Logic Low	$\begin{aligned} & \mathrm{I}_{\mathrm{CCL}} \\ & \mathrm{I}_{\mathrm{CCH}} \end{aligned}$		40 .05	200 10	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{Cc}}=15 \mathrm{~V}, \mathrm{Vo}=\text { open } \\ & \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{cc}}=15 \mathrm{~V}, \mathrm{Vo}=\text { open } \end{aligned}$		
Input Forward Voltage	V_{F}		1.7	2.5	V	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$		
Temperature Coefficient of input diode Forward Voltage	$\frac{\Delta V_{F}}{\Delta T_{A}}$		- 2.3		$\frac{\mathrm{mV}}{{ }^{\circ} \mathrm{C}}$	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}$	1	
Input Reverse Breakdown Voltage	B_{VR}	3			V	$\mathrm{I}_{\mathrm{R}}=10 \mu \mathrm{~A}$		
Input to Output Leakage Current	11.0			1.0	$\mu \mathrm{A}$	Relative Humidity $\leq 50 \%$, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\text {I-O }}=1000 \mathrm{Vdc}$		1
Propagation Delay Time Logic High to Low	$\mathrm{t}_{\text {PHL }}$		0.3	1.0	$\mu \mathrm{S}$	$\begin{gathered} \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{VcC}=5 \mathrm{~V}, \\ \mathrm{R}_{\mathrm{L}}=4.1 \mathrm{~K} \Omega, \end{gathered}$	3,4	
Propagation Delay Time Logic Low to High	$\mathrm{t}_{\text {PLH }}$		0.5	2.0	$\mu \mathrm{S}$	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{Vcc}=5 \mathrm{~V}$, $R_{\mathrm{L}}=4.1 \mathrm{~K} \Omega$,	3,4	

TYPICAL PERFORMANCE CURVES

Fig. 1 -LED Forward Characteristics

Fig. 2 - Normalized Output Current vs. \boldsymbol{F} vs. Temperature

Fig. 3 -Propagation Delay vs.
Temperature

Fig. 4 - Switching Test Circuit

[^0]: NOTES:

 1. Measured between pins 1,2 and 3 shorted together and pins 5,6 and 7 shorted together. $T_{A}=25^{\circ} \mathrm{C}$ and duration $=1$ second.
 2. Current transfer ratio is define as the ratio of output collector current, Ic to the forward LED current, IF times 100\%
